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Abstract. We have studied the crystal structures of all the 3d, 4d, and 5d transition metals at zero 
pressure and temperature by means of the LMTO method and Andersen’s force theorem. We find 
that, although the structural energy differences seem to be overestimated by the theory, the predicted 
crystal structures are in accord with experiment in all cases except Au. In addition we have 
investigated the effect of pressure upon the alkali metals (Li, Na, Rb, Cs) and selected lanthanide 
metals (La, Ce, Lu) and actinide metals (Th, Pa). In these cases the theory gives accurate 
predictions of the stability of the close-packed structures but is found to be less accurate for open 
structures such as a-U.
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1. Introduction

Many of the characteristic properties of the metallic elements are a conse
quence of their ability at normal temperature and pressure to form crys
tals in which the metal atoms are arranged in a regular pattern which 
repeats itself throughout the interior of the crystal. These crystals are the 
microscopic building blocks of all the pieces of metal which we encount
er around us, and it is therefore of great importance to investigate their 
basic properties both experimentally and theoretically. The hope is of 
course that by isolating and understanding the factors that govern the 
stability of the crystal structures found in nature one may eventually be 
able to design metals with specified properties.

The crystal structures of solid state materials are established by X-ray 
diffraction experiments, and the results for the elemental metals are com
piled in Fig. 1. It turns out that the variety of crystal structures which the 
metallic elements take on is limited to essentially the five types shown on 
Fig. 2, and that four of these five structures are so-called close-packed 
structures. The term close-packed refers to the fact that the fee, hep, 
dhep, and Sm-type structures can be derived from stacking hexagonal
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Fig. 1. Crystal structures of the metallic elements at low temperature.

La 
dhcp

Ce 
fcc

Pr
dhcp

Nd 
dhcp

Pm 
dhcp

Sm
Sm-t

Eu 
bcc

Gd 
hep

Tb 
hep

Dy 
hep

Ho 
hep

Er 
hep

Tm 
hep

Yb 
hep

Th 
fcc

Pa 
bet

U 
orth.

Np 
orth.

Pu 
mon.

Am 
dhcp

Cm 
dhcp

Bk 
dhcp

Cf 
dhcp

Es Fm Md No Lr

layers of spheres of equal radii in the closest possible fashion. As a result 
of this close-packing the coordination number in these four structures is 
12, each atom being surrounded by 12 nearest neighbours. The bcc 
structure is a little less close-packed and has a coordination number of 8, 
although it is sometimes referred to as having a coordination number of 
14 on account of the 6 next nearest neighbours, which are only slightly 
farther away than the nearest neighbours.

It may be seen from Fig. 1 that the crystal structures of the metallic 
elements tend to occur in sequences when viewed as functions of atomic 
number or hydrostatic pressure. The most prominent example of this 
phenomenon occurs with the d transition metals, where all three transi
tion series, excluding the four magnetic 3d metals, exihibit the same 
hcp-»bcc-»hcp-»fcc sequence as the d states become progressively filled. A 
similar sequence is found in the lanthanides where the hcp->Sm- 
type-»dhcp->fcc sequence established as a function of decreasing atomic 
number may also be realized by subjecting each individual lanthanide 
metal, except Ce, Eu, and Yb, to hydrostatic pressure. Finally, the al
kaline earth metals, together with the divalent rare earths Eu and Yb, are 
part of a short fcc-»bcc sequence which is also realized in Ca, Sr, and Yb 
under high pressure.



CRYSTAL STRUCTURE FROM ONE-ELECTRON THEORY 211

In the present contribution we shall establish the extent to which the 
systematics outlined above can be explained by means of a state-of-the- 
art theory for the ground state of the bonding electrons. The theory we 
apply is a one-electron theory in which each electron is treated as an 
independent particle moving in the effective potential from all the other 
electrons and the nuclei, and the only input to the calculations is the 
atomic number of the metal to be treated. In order to be able to reduce 
the original many-body problem significantly one has to solve the elec
tronic structure problem self-consistently, and to this end we use the 
Linear Muffin-Tin Orbital (LMTO) method (Andersen 1975) in con
junction with a scaling principle as outlined by Skriver (1984). The 
structural energy differences which determine the relative stability of the 
crystal structures to be studied are in turn obtained from the one-electron 
states by means of Andersen’s force theorem (Mackintosh and Andersen 
1980). The whole procedure is quite general and allows us to treat all 
metals on the same footing.

hep bcc

Fig. 2. Close-packed crystal structures of the elemental metals.
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The remainder of the present contribution is organized as follows: In 
Sect. 1.1 we outline the simplest possible theory of structural stability in 
terms of the density of electronic states, and in the following section 1.2 
we apply this simple theory to state densities obtained by means of 
canonical band theory. In Sect. 2 we review previous theoretical efforts 
in the field and compare them with the present approach, the theoretical 
foundations of which are discussed in Sect. 3. In Sect. 4 we outline an 
electrostatic correction to the Atomic Sphere Approximation (ASA) 
which becomes important for structures less close-packed than those 
shown in Fig. 2. Finally, in Sect. 5 we present the calculated structural 
energy differences for the alkalis, the alkaline earths, the transition met
als, the lanthanides, and the light actinides.

1.1. A simple theory of structural stability
In the main part of the following we shall describe the results of a series 
of calculations of the relative stability of the crystal structures of some 40 
elemental metals. In such a presentation, centred around an account of 
theoretical results and their relation to experimental observations, it is 
easy to lose track of the principles upon which the calculations are based. 
We shall therefore immediately present a simple model which will illus
trate these principles and in addition will serve to make more com
prehensible the complete calculations to be described later.

According to standard textbooks one may imagine a metal formed in 
the thought experiment illustrated in Fig. 3 where N initially infinitely 
separated metal atoms are slowly brought together. Here we shall con
sider specifically a transition metal in which the important states have d 
character. As a result of the increasing contact between neighbouring 
atoms the 5N atomic d states give rise to a band of energies ranging from 
B which corresponds to bonding between most neighbours to A which 
corresponds to antibonding between them. The band of energies formed 
in this way constitutes the energy band of the metal, and it contains all 
the one-electron states which the conduction electrons may occupy.

The energy gained in the above process is called the cohesive energy, 
and according to Fig. 3 it is simply the difference between the total 
atomic energy nEa and the total band energy nE, i.e.

Ecoh = n(Ea-E) (1)

assuming an occupation of n d electrons per atom. In writing down (1) 
we have furthermore assumed that the d states broaden around the 
atomic level Ea, that is that the centre C of the d band coincides with Ea.



CRYSTAL STRUCTURE FROM ONE-ELECTRON THEORY 213

Fig. 3. Formation of the 
energy band of a metal 
from an atomic energy 
Ea. The width is IV, the 
bottom and top B and A, 
respectively, the Fermi 
level, i.e. the highest oc
cupied energy Ep, the 
cohesive energy Ecoh, and 
the number of electrons 
per atom n.

The average energy E, which corresponds to the centre of gravity of 
the occupied part of the d band and which enters (1), may be obtained by 
summing the one-electron energies 8j between the bottom of the band B 
and the highest occupied one-electron level EF, i.e.
__ occ

E = n_1 S s,
7ef (2)

= n_1 J EN(E)dE

where we have introduced the state density function N(E) which de
scribes how the states are distributed in the energy range from B to A.

If we assume that all states within the d band are equally probable the 
state density will have the rectangular shape shown in Fig. 4a, and the 
cohesive energy will simply be given by

E'„h =_®Ln(10-n) (3)
20

As noted by Friedel (1969) this form clearly exhibits the parabolic varia
tion with the d occupation, cf. Fig. 4, which is also found experimental
ly (Gschneidner 1969, Friedel and Sayers 1977), especially when proper 
account is taken of the atomic effects (Brooks and Johansson 1983), and
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Fig. 4. Rectangular and 
skew state densities model
ling the dependence of the 
cohesive energy upon crystal 
structure. The cohesive ener
gy as a function of d occupa
tion n is shown for the rec
tangular state density at the 
bottom.

this agreement was taken as confirmation of the assumptions of the 
model outlined above.

From Eq. (1) and Fig. 4 it is clear that the energy gained in forming a 
metal from the free atoms depends upon the relative position of the 
atomic d level Ea and the average band energy E. The latter depends 
upon the shape of the state density which in turn depends upon the 
arrangement of the atoms in the metal crystal, and hence different crystal 
structures will lead to different cohesive energies.

It follows that the relative stability of all possible crystal structures for 
a given metal will be determined by the particular shape of the corre
sponding state densities. We have illustrated this simple result in Fig. 4 
from which it is straightforward to see that the crystal structure leading 
to the skew state density will have a higher cohesive energy and hence be 
more stable than the structure which leads to the rectangular state densi
ty on account of the lowering of E. Hence, the relative stability 
of two crystal structures may be estimated simply by comparing the 
corresponding average band energies E.

In the complete calculations to be reported later we have applied this 
simple principle to accurately calculated state densities, and the success 
with which the results explain the experimental observations may be 
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taken as a justification of the assumptions underlying the one-electron 
approach outlined above. As will be explained in Sect. 3 there is however 
also theoretical justification for such a one-electron approach in the form 
of the so-called force theorem (Mackintosh and Andersen 1980) which 
dictates how the band structures and the corresponding state densities of 
the metals in the different crystal structures should be calculated.

1.2. Structural stability from canonical band theory
The concept of canonical bands (Andersen 1975, Andersen and Jepsen 
1977) gives rise to a simple and yet realistic procedure for estimating the 
relative stability of the close-packed crystal structures which form for 
instance the transition metal sequence, Fig. 1. According to canonical 
band theory an unhybridized, pure / band may be obtained from (An
dersen and Jepsen 1977, Skriver 1984)

where J/j are the canonical bands which depend solely upon the crystal 
structure, S is the atomic Wigner-Seitz radius, C/ the centre of the / band, 
|1/ the band mass, and yt a distortion parameter. The three potential 
parameters C/, [1/ and yi depend upon potential and volume but not upon 
crystal structure.

In a transition metal one may to a good approximation neglect all but 
the d bands. Since furthermore ya is small, one has the following poten
tial-, i.e. atomic number-, independent estimate of the band contribution 
to the cohesive energy Ecoh
Ki S2 Ecoh = - gdS2 J F (E - Cd) Nd(E) dE

= - J^(nd) £ Nd(5d) d5d

in terms of the first-order moment of the canonical state density Nd. 
Andersen et al. (1977) have evaluated (5) as a function of d occupation 
number nd and found the expected parabolic behaviour (Friedel 1969) 
which may also be obtained directly if Nd(E) is approximated by a 
rectangular state density as explained in the introduction.

Since the centre Cd and the band mass pd are independent of crystal 
structure, the first-order moment (5) may be used to estimate the struc
tural energy differences according to Eq. (9). The result shown in Fig. 5 
is identical to that of Andersen et al. (1977) and similar to the one
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Fig. 5. Structural energy dif
ferences obtained from canon
ical d bands by means of Eq. 
(5) as functions of the calcu
lated canonical d occupation.

obtained by Pettifor (1970). It accounts qualitatively for the crystal struc
tures of the non-magnetic transition metals, Fig. 1, in the beginning of 
the series but fails to predict the fee structure at high d occupations. This 
failure is attributed either to a failure of the force relation (Mackintosh 
and Andersen 1980) or to hard-core effects (Pettifor 1970, 1972, 1977) 
omitted i Eq. (5).

The lanthanide metals are found to have d occupation numbers vary
ing almost linearly with atomic number from 1.99 in La to 1.45 in Lu 
(Skriver 1983) or from 2.5 to 2.0 if hybridization is neglected (Duthie 
and Pettifor 1977). Furthermore, their crystal structures are as closely 
packed as are those of the d transition metals and hence their structural 
energy differences may be estimated by Eq. (5). The results shown in 
Fig. 6 are qualitatively similar to but on the average a factor 1.7 smaller 
than those obtained by Duthie and Pettifor (1977). In this comparison 
one may take the d-band width to be approximately 25/pdS2 in order to 
bring their Fig. 2 onto the scale of Fig. 6. The results in Fig. 6 account 
qualitatively for the hcp-»Sm-type-^dhcp sequence found experimentally 
in going from Lu to La and more importantly perhaps, since the d 
occupation for the lanthanides is calculated to increase with pressure and 



CRYSTAL STRUCTURE FROM ONE-ELECTRON THEORY 217

decrease with atomic number, they also explain that part of the same 
sequence is realized when a particular lanthanide metal is subjected to 
pressure. It therefore follows that the d occupation number, which is 
essentially a measure of the relative position of the s and d bands, may be 
used to rationalize the structure of the generalized phase diagram for the 
lanthanides constructed by Johansson and Rosengren (1975).

At the present stage one should realize that the results obtained by 
canonical band theory and shown in Figs. 5 and 6 are only qualitative. 
Indeed, if one considers Fig. 7 where the canonical estimates are com
pared with experimental crystal structures, one finds that the canonical 
theory in several cases does not predict the correct crystal structure 
independently of whether one uses the self-consistent d occupation num-

d - occupation [states / atom ]

Fig. 6. Structural energy dif
ferences obtained from canon
ical d bands by means of Eq. 
(5) in the d occupation 
number range appropriate to 
the lanthanide crystal struc
ture sequence.
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Fig. 7. Canonical estimate of the most stable close-packed crystal structure as a function of the 
calculated d occupation number compiled from Figs. 2 & 3, horizontal bars. Below are given two 
estimates of the actual d occupation numbers of the 5d metals together with the experimentally ob
served crystal structures.

bers or those obtained conventionally by nonlinear interpolation along a 
row in the periodic table (see Fig. 1). La, Re, and Ir, for instance, are 
examples of incorrect predictions, but here one may argue that the cor
rect crystal structure is nearby and hence the failure of the theory may be 
considered less important. Ba is another example and in this case there is 
no nearby bcc structure. However, in Ba the d occupation number is 
only a fraction of the total number of electrons and hence a theory based 
solely upon unhybridized d bands is probably inapplicable. The most 
important failure is connected with the d occupation range from 1.6 to 
2.6 [states/atom]. According to Fig. 7, La, Pr, Nd, and Pm should incor
rectly form in the Sm-type structure while Ti, Zr, and Hf are expected to 
be part of the lanthanide sequence. Instead, the latter three metals form 
in the hep structure which is the least stable among those considered in 
the d occupation range above 2 [states/atom].

It may be concluded that the simple estimate of structural energy 
differences obtained by means of the first-order moments of the canoni
cal state densities is of limited value as a predictive tool. It is, however, of 
sufficient physical significance to warrant a study of the crystal structures 
of metals using a more accurate one-electron theory, and to be used in 
the interpretation of the results of such a study.
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2. Theoretical approaches to structural stability

The most prominent crystal structure sequence in the periodic table is 
the hcp->bcc-»hcp-Tcc sequence found among the d transition metals, see 
Fig. 1. Qualitative explanations of this trend have been given by Brewer 
(1967) in terms of Engel correlations between the valence sp electrons 
and by Kaufman and Bernstein (1970) in terms of semi-empirical ther
modynamic calculations of phase diagrams, whereas Deegan (1968), 
Dalton and Deegan (1969), and Ducastelle and Cyrot-Lackmann (1971) 
have attempted more quantitative approaches based upon one-electron 
theory.

Deegan (1968) and Dalton and Deegan (1969) showed that the stability 
of the bcc phase for nearly half-filled d shells might be explained by 
differences in the sum of one-electron band structure energies, and they 
pointed to the special double-peak structure of a bcc state density as 
responsible for this stability. Later, Pettifor (1970, 1972) extended the 
work of Dalton and Deegan and showed that the entire crystal structure 
sequence of the transition metals could be accounted for by a one-elec
tron approach. In his calculations Pettifor (1977) found no evidence for 
the Brewer-Engel correlation (Brewer 1967), which relates crystal struc
ture stability to the sp occupation numbers, and instead he related the 
hcp-Tcc-dicp—>fcc sequence to the change in d occupation which takes 
place across a transition series. This latter viewpoint has proven to be 
very fruitful in that it may be used as a simple »one-parameter theory« 
which in many cases provides remarkably good estimates of structural 
stabilities also for non-transition metals such as the alkaline earths 
(Skriver 1982).

The crystal structures of the trivalent lanthanides, i.e. Pr through Lu 
except Eu and Yb, exhibit such regularity, as functions of atomic 
number, pressure, and temperature, that Johansson and Rosengren 
(1975) were able to construct a single generalized phase diagram for these 
metals. In this case the crystal structures observed under ambient condi
tions, (see e.g., Beaudry and Gschneidner 1978) are found to be part of 
the sequence hcp->Sm-type-»dhcp-»fcc-»fcc’ established by high-pressure 
experiments (Jayaraman and Sherwood 1964, Piermarini and Weir 1964, 
Jayaraman 1965, McWhan and Stevens 1965, 1967, Liu et al. 1973, Liu 
1975, Nakaue 1978) and alloying (Koch 1970). Here fee’ refers to the 
recently discovered distorted fee structure (Grosshans et al. 1981). The 
lanthanide sequence is also found in Y (Vohra et al. 1981) where there are 
no occupied f states and in the heavier actinide (Stephens et al. 1968, 
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Akella et al. 1979, 1980, Roof et al. 1980, Roof 1982, Benedict et al. 
1984) at pressures where the 5f states are still localized. Qualitative expla
nations of the hcp->Sm-type->dhcp->fcc sequence have been attempted in 
terms of pseudopotential theory by Hodges (1967) and in terms of a 4f 
contribution to the bonding by Gschneidner and Valletta (1968), while 
Duthie and Pettifor (1977) gave a quantitative explanation in terms of 
one-electron theory.

Duthie and Pettifor (1977) showed that the lanthanide crystal structure 
sequence could be explained by differences in the total one-electron band 
structure energies, and they found a strong correlation between crystal 
structure and d-occupation number. Hence it appears that the lanthanide 
metals, as far as their crystal structures are concerned, behave as ordinary 
5d transition metals with a d occupation ranging from approximately 2.0 
in La to 1.5 in Lu. This result is very appealing because there is a one-to- 
one correspondence between the calculated d-occupation number and 
the single f parameter used by Johansson and Rosengren (1975) and 
Johansson (1978) to rationalize the lanthanide crystal structure sequence, 
and because it is immediately possible to understand the behaviour of Y 
(Vohra et al. 1981) and the heavy actinides (Stephens et al. 1968, Akella et 
al. 1979, 1980, Roof et al. 1980, Roof 1982, Benedict et al. 1984) within 
the same framework.

At first sight it may seem surprising that the crystal structures of so 
many metals can be explained on the basis of differences in the total one- 
electron band structure energies alone, since the total electronic energy, 
apart from the one-electron term, has contributions also from double 
counting and exchange-correlation. However, it has recently been 
shown (Andersen et al., 1979, Mackintosh and Andersen 1980, see also 
page 119 of Heine 1980) that, provided the one-electron potential is kept 
frozen upon a displacement of the atoms, the corresponding changes in 
the double counting and exchange-correlation terms cancel to first order 
in the appropriate local electron density, and hence the difference in the 
sum of the one-electron energies, obtained by means of the frozen, i.e. 
not self-consistently relaxed, potential, will give an accurate estimate of 
the corresponding self-consistent change in the total electronic energy. It 
is exactly this cancellation, which also leads to the so-called pressure 
expression (Nieminen and Hodges 1976, Pettifor 1976) and to the more 
general force relation derived by Andersen (see Mackintosh and An
dersen 1980), that in turn justifies the simple band structure approach 
taken for instance by Pettifor (1970, 1972, 1977).

In their work Pettifor (1970, 1972, 1977) and Duthie and Pettifor 
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(1977) focused their attention on the contribution to the total energy 
from the d bands and either neglected hybridization with the sp bands 
entirely or included hybridization appropriate to some average element. 
Hence their picture is essentially a canonical one (cf. Sect. 1.2) in which 
the energy band structures depend only upon crystal structure and not 
upon band-filling. It is obvious that such a picture, although adequate 
for the d transition metals, will fail in cases where states of non d charac
ter are as or more important than the d states, as they are for instance in 
the alkali, the alkaline earth and light actinide metals. Fortunately, the 
force theorem is not restricted to the canonical approximation and it has 
recently been used in theoretical investigations of crystal structures in the 
third row metals (Moriarty and McMahan 1982, McMahan and Moriar
ty 1983) the alkaline earth metals (Skriver 1982), and in Cs above the s-d 
transition (McMahan 1984).

In the present work we go beyond the canonical approximation and 
use the force theorem (Mackintosh and Andersen 1980) to calculate the 
structural energy differences for all the 3d, 4d, and 5d transition metals at 
zero pressure and temperature. In addition we investigate the effect of 
hydrostatic pressure upon the crystal structures of alkali, alkaline earth, 
lanthanide and actinide metals.

Traditionally the non-transition metals, e.g. alkali and alkaline earth 
metals, have been treated by means of pseudopotential theory, and the 
crystal structures predicted from this approach are generally in good 
agreement with experiment (Animalu 1967, Heine and Weaire 1970, 
Moriarty 1973, 1982, Hafner and Heine 1983, Young and Ross 1984). It 
has, however, not been straightforward to generalize the pseudopoten
tial method to treat narrow d band materials, and to do so one has had to 
add localized orbitals to the plane-wave basis (Zunger and Cohen 1979). 
Thus the d band in K is described by the d component of plane-waves 
while that of Cu is described by additional d orbitals, which is somewhat 
inconsistent with the smooth lowering of the 3d band through the series 
K, Ca, Sc, ..., Cu. The method has, however, proved to be very accu
rate.

The present approach, based upon the Linear Muffm-Tin Orbital 
(LMTO) method (Andersen 1975), has the advantage of employing the 
same type of basis functions for all the elements thus leading to a concep
tually consistent description of trends throughout the periodic table. In 
addition, the LMTO method is extremely efficient on a computer re
quiring only the solution of an eigenvalue problem of 9x9 (or 16X16 iff 
states are included) per atom at each point in reciprocal space. Since we 
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are mainly interested in trends, we have neglected the nonspherical con
tributions to the charge density, which may explain what seems to be a 
systematic overestimate of the calculated structural energy differences. 
We have furthermore neglected a structure-dependent electrostatic inter
action between atomic spheres except in the few cases where it contrib
utes significantly to the energy differences.

3. One-electron theory of structural stability

At low temperatures the crystal structure of a metal is determined by the 
total electronic energy U in addition to a small contribution from the 
zero-point motion*,  which we shall neglect. Hence, if one wants to 
determine the stability of some crystal structure, say bcc, against some 
reference structure, which we shall take to be the close-packed fee struc
ture, one may calculate the total energy of both phases and form the 
structural energy difference

* The zero-point energy is proportional to the Debye temperature i.e. Eo = (9/8) kB 0D. 
Typically 0], varies by 1-10 [K] between different structures of the same metal (see 
Gschneidner 1964) and hence the AEO to be added to (6) is of the order of 0.01-0.1 
[mRy] which in most cases will be too small to affect the structural stabilities.

bcc-fee kJbcc — bJfcc (6)

where the total energy according to the local density approximation 
(Kohn and Sham 1965) may be written as the sum over occupied states of 
the one-electron energies E; corrected for double counting, plus electro
static terms (see e.g., sections 13 and 15 of Heine 1980 or sections 7.2 and 
7.3 of Skriver 1984), i.e.

occ

U = S E; — double counting + electrostatic (7)
i

If the difference (6) is negative the bcc structure will be stable against fee.
The total energy for say a 4d metal is of the order of IO4 [Ry] mainly 

because of the contributions from the low-lying core levels while typical 
structural energy differences are of the order of 10~3 [Ry]. Hence, ex
treme accuracy is needed in order to use (6) directly, and one would like 
to have a numerically more satisfactory procedure. The force theorem 
(Mackintosh and Andersen 1980) gives rise to such a procedure, but 
more importantly perhaps it casts the problem of finding stable crystal 
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structures into a form where the significant contribution comes from the 
one-electron valence energies and not from double counting nor from 
the deep core-levels.

The force theorem dictates that we adopt the following procedure: For 
a given metal at a given atomic volume one must solve the energy-band 
problem self-consistently assuming the reference crystal structure. To 
this end we use the LMTO method (Andersen 1975) within the Atomic 
Sphere Approximation (ASA) including the combined correction to the 
ASA (Andersen 1975). In addition we take account of the relativistic 
effects, except spin-orbit coupling which we neglect, include exchange
correlation in the form given by von Barth and Hedin (1972), and freeze 
the appropriate cores. This part of the calculations is described in detail 
by Skriver (1984). We have now minimized the energy functional U{n) 
with respect to changes in the electron density n and obtained the ground 
state density nfcC. Because of the stationary properties of U one may 
obtain, for instance, Ubcc from a trial charge-density nbcc constructed by 
positioning the self-consistent fee atomic-sphere potentials in a bcc geo
metry, solving the one-electron Schrödinger equation, and populating 
the lowest-lying one-electron states. Hence,

^bcc—fee Ubcc^ribcc J’ Ufcc{nfcc) (8)

where the errors relative to (6) are of second order in iibcc ~ nbccc. Now, 
the use of a frozen, i.e. not self-consistently relaxed, potential to generate 
Ubcc ensures that the chemical shifts in the core levels drop out of Eq. (8) 
and also that the double-counting terms cancel. Hence, the core level 
energies and the double-counting terms may be neglected entirely in Eq. 
(7) leaving only the valence one-electron energies and the electrostatic 
terms to be considered. The fact that the freezing of the potential leads to 
such a computationally simple and conceptually important result was 
already noted by Pettifor (1976) in his derivation of the pressure expres
sion.

Within the atomic sphere approximation (Andersen 1975) the atomic 
Wigner-Seitz sphere of an elemental metal is neutral and there is there
fore no electrostatic interaction between the spheres. Hence the electro
static terms in Eq. (7) vanish and the structural energy difference (8) may 
□e obtained from
&bcc-fcc = / F E Nbcc(E) dE - p*  E Nfcc(E) dE (9)B

where N(E) is the one-electron state density. Furthermore, the ASA 
illows a separation of the potential- and crystal-structure-dependent 
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parts of the energy band problem (Andersen 1975, Andersen and Jepsen 
1977, Skriver 1984). Hence, all that is required at a given atomic volume, 
in addition to the self-consistent fcc calculation, is to calculate the energy 
bands of the relevant crystal structures with the use of the self-consistent 
fee potential parameters, evaluate the sums of the one-electron energies, 
and subtract according to Eq. (9). This procedure is quite general, treats 
all s, p, d, and f electrons on the same footing, and may be applied to all 
metals in the periodic table.

4. Madelung correction to the ASA

The errors of neglecting the structure-dependent electrostatic terms in 
(7) may be estimated by means of what has been called either the Muffin- 
Tin (Glötzel and Andersen, unpublished) or Ewald (Esposito et al. 1980) 
correction to the ASA. To derive this correction one observes that the 
electrostatic energy per ion of a lattice of point ions of charge qs|e| 
embedded in a negative neutralizing uniform charge density is given by 
the well-known Madelung expression

UM = - l/2(qje|)2 (10)

where aM is the lattice Madelung constant and S the atomic Wigner-Seitz 
radius. In the ASA this expression is approximated by the energy of an 
ion embedded in a single neutralizing atomic sphere, whereby aM(ASA) 
= 1.8. The correction is therefore

AUm = l/2(qs|e|)2 (11)

In a Muffin-Tin model the effective charge qs|e| is the charge density in 
the interstitial region between the Muffin-Tin spheres times the volume 
of the unit cell. In the ASA this becomes

Tabel 1. Madelung constant to be used in Eq. (11).

aM 1.8-aM (1.8 Ct/vl) ( )fcc

fcc 1.79174723 8.253 10“3
bcc 1.79185851 8.142 IO-3 - 0.111 10“3
hep 1.79167624 8.324 10"3 0.071 10-3
a-U*) 1.78418298 15.817 10-3 7.564 10-3

*) b/a = 1.964, c/a = 1.709, y - 0.1
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qs|e| = S3n(S)|e| (12)

where n(S) is the electron density at the atomic radius.
For close-packed crystal structures otM is approximately 1.8, see Table 

1, and hence the correction (11) is smallest in these. Typically qs/S lies in 
the range from 0.5 to 5 [a.u.] so that the Madelung correction for the bcc 
and hep structures relative to the fee structure lies in the range 0.05 to 0.5 
[mRyj.

5. Structural stability from LMTO band calculations

In the following we shall present structural energy differences for most 
metallic elements to the left of and including the noble metals as obtained 
by means of the procedure described in Sect. 3. The results will be valid 
only at low temperature and at atmospheric pressure, strictly T — 0[K] 
and P = 0 [GPa], except in a few important cases where structural 
stability has been followed as a function of pressure.

5.L The alkali metals
The calculated structural energy differences for alkali metals at equilib
rium are almost two orders of magnitude smaller than those of, for 
instance, the alkaline earth metals. To judge the accuracy of our approach 
we have therefore studied these differences as functions of pressure as 
shown in Fig. 8 from equilibrium down to a compression of 2.5. The 
results in Fig. 8 include the Madelung correction (11) which turns out to 
be crucial in the comparison with recent pseudopotential and LMTO 
results (Moriarty 1982, Moriarty and McMahan 1982, McMahan and 
Moriarty 1983).

From Fig. 8 it is expected that the heavy alkalis at low temperature and 
pressure should form in the bcc structure while Li should be hep. Experi
mentally it is known (Donohue 1975, Young 1975) that all five alkali 
metals at room temperature form in the bcc structure, and that they 
remain in this structure down to 5 [K] except Na which below 51 [K] 
transforms into the hep structure and Li which at low temperature 
exhibits both an hep and an fee phase. Hence, except for Na the low 
pressure structures are correctly predicted.

Recently, Moriarty (1982) successfully estimated the structural stabili
ty for some 20 non-transition metals by means of his Generalized 
Pseudopotential Theory (GPT). He found incorrectly (see his Table VIII)
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P[GPa]

Fig. 8. Structural energy differences for the 5 alkali metals as functions of the relative volume 
V/Vo. At the top is given the calculated LMTO pressure P. The calculations included s, p, and d 
orbitals and the Madelung correction Eq. (11).

that all the alkali metals at P = 0 and T = 0 should form in the hep 
structure, but pointed out that at a slight compression the experimentally 
observed bcc structure would be stable in the heavy alkalies K, Rb, and 
Cs. A similar problem is encountered in another recent pseudopotential 
study (Young and Ross 1984) where the structures of Li and K at low 
temperature and pressure are predicted in agreement with experiment 
but where Na is expected to be fee. On the other hand, in view of the 
extremely small energies involved, see Fig. 8, it is not surprising that the 
prediction of the low-pressure part of the alkali phase diagrams is a 
severe test of any calculation.

In their work on the third-row metals McMahan and Moriarty (1983) 
compared structural energy differences obtained by means of the LMTO 
and GPT methods and found excellent qualitative agreement except for 
Na. If we compare our Na results in Fig. 8 with their Fig. 1 we find 
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somewhat surprisingly that our calculations are in closer agreement with 
their GPT than with their LMTO results. There are several reasons for 
the differences between the two LMTO calculations. Firstly, we have 
included the Madelung correction (11) without which the calculated bcc 
curve is entirely above and the hep curve entirely below the fee, in 
qualititative agreement with their LMTO results. Secondly, we have 
sampled the Brillouin zone on a finer mesh, i.e. 916, 819, and 448 points 
in the irreducible wedge for fee, bcc, and hep, respectively, and finally, 
we have improved the convergence of the reciprocal lattice sums in the 
expression for the combined correction terms (Andersen 1975) whereby 
the numerical errors in the structural energy differences for Na are below 
0.01 mRy. As a result it appears that in the case of closely packed crystal 
structures the LMTO method including the Madelung correction (11) 
has an accuracy comparable to that attained by pseudopotential theory.

Owing to the inclusion of only three crystal structures in Fig. 8, Cs is 
incorrectly calculated to transform into the bcc structure at a compres
sion of 2.2. However, in a recent study of Cs above the s-d transition, 
i.e. beyond the pressure range of the present work, McMahan (1984) 
found that Cs had transformed into the Cs IV structure before the bcc 
structure became more stable than fee, in agreement with high pressure 
experiments (Takemura et al. 1981, 1982).

5.2. The alkali metals at moderate compression
According to Fig. 8 all the alkali metals should at low temperature be 
part of the same crystal structure sequence bcc->hcp^»fcc, and one would 
anticipate that these transitions are driven by the pressure-induced low
ering of initially unoccupied d states through the Fermi level, whereby 
electrons are gradually transferred from the s into the d band. If one plots 
the calculated crystal structures as functions of d occupation number as 
in Fig. 9 it is seen that only in the heavy alkalis K, Rb, and Cs is this 
mechanism at work while the transitions in Li and Na at least below 35 
[GPa] have a different origin.

The experimental situation at room temperature has recently been 
summarized as follows (Takemura and Syassen 1983, Olijnyk and Holz
apfel 1983). Li exhibits a bcc->fcc transition at 6.9 [GPa] (Olinger and 
Shaner 1983) while Na remains in the bcc structure up to at least 30 
[GPa] (Alexandrov et al. 1982) which substantiates the notion that the s- 
d transition is unimportant in these two metals. The heavy alkalis all 
exhibit a bcc-»fcc transition [K (Takemura and Syassen 1983, Olijnyk 
and Holzapfel 1983), Rb (Takemura and Syassen 1982), Cs (Hall et al.
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Fig. 9. Calculated crystal structures for the al
kali metals as Junctions of the LMTO pressure 
and d occupation number.

nd [states/atom]

1964)] before they transform into more complex structures of which 
only the so-called Cs IV has been solved so far (Takemura et al. 1982).

To our knowledge there are no low-temperature high-pressure ex
periments which could substantiate the existence of the predicted 
bcc-»hcp->fcc sequence, where according to Figs. 8 and 9 the hep phase at 
least in K should be stable over an appreciable pressure range. However, 
in view of the fact that temperature at atmospheric pressure stabilizes the 
bcc phase to the extent that all the alkali metals are bcc above 100 K it is 
reasonable to assume that the intermediate hep phase, which is only 
marginally stable, is also suppressed at higher temperatures. Thus, in a 
high-pressure experiment at room temperature one would see a direct 
bcc->fcc transition, as indeed one has observed (Hall et al. 1964, Take- 
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mura and Syassen 1982, 1983, Olijnyk and Holzapfel 1983). If the hep 
phase is suppressed the best estimate of the room temperature bcc->fcc 
transition pressure is the critical pressure for the low-temperature 
hcp-*fcc  transition (cf. Fig. 8). We find the transition pressures to be 11, 
5.5, and 1.4 [GPa] for K, Rb, and Cs, respectively, which should be 
compared to the experimental values of 11, 7, and 2.2 [GPa] listed in the 
references cited above.

Independent of whether the intermediate hep phase exists or not, the 
high-pressure fee phase in K, Rb, and Cs is much more stable than the 
initial bcc phase, see Fig. 8. Bardeen (1938) suggested already in 1938 
that the transition observed at 2 [GPa] in Cs was from the normal bcc to 
an fee phase and that it resulted from the non-electrostatic interaction 
energy of the ions, the important term being the Born-Mayer (Born and 
Mayer 1932) repulsion between the ion cores. Here we shall show that 
the fee phase in the heavy alkalies owes its stability directly to the 
pressure-induced s-d transition which is also shown to be behind, for 
instance, the isostructural fcc-fcc transition in Cs (Glötzel and McMahan 
1979).

In Fig. 10 we compare the important parts of the fee and bcc band
structures of Cs at the zero-pressure volume, Vo, and at the volume 
where the fee phase becomes more stable than the initial bcc phase. The 
four band structures may be characterized as nearly free-electron and s- 
like below the Fermi level EF and d-like above EF. Typical d states have 
symmetry labels such as T12, T25>, H12, and X3, and they are seen to 
approach the Fermi level under compression. At V = Vo the fee and bcc 
band-structures are found to be extremely similar in the range below EF 
which is important in the sums over occupied states in Eq. (9): They are 
both parabola shaped and »touch« EF at a single symmetry point, L] for 
fee and N] for bcc. As a result, the sum of the one-electron band
structure energies are almost equal and the main contribution to the 
stability of the bcc phase comes from the electrostatic Madelung term 
(11) which is negative, see Table 1.

At V = 0.7 Vo hybridization with the descending d band has moved 
the X] and neighbouring levels below EF thereby lowering the energy in 
the fee phase with respect to that in the bcc phase to the extent that the 
Madelung term is overcome and the structural energy difference is zero. 
Under further compression the Xj level continues to descend and the fee 
phase becomes increasingly stable, see Fig. 11. This trend is eventually 
broken because the maximum in the band moves away from X
and because the X3 level drops below the Fermi level. Both effects de-
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Cs, fcc, S= 5.62 [a.u.] Cs, bcc, S = 5.62 [a.u.]

Cs, fcc, S = 5.00 [a.u.] Cs, bcc, S = 5.00 [a.u.]

X A T A LQ N ZT
WK

r A HGNZ r A PFH

Fig. 10. Energy band structures for Cs at equilibrium, S = 5.62 [a.u.], and at a compressed 
volume, S — 5.0 [a.u.]. Conventional symmetry labels are given and the dominant s, p or d 
character is indicated at a few selected energy levels.

stabilize the fcc structure and subsequently Cs transforms into the Cs IV 
phase. We shall not discuss this development here but refer to the experi
mental work of Takemura et al. (1982) and the theoretical treatment of 
McMahan (1984).

The presence of a gap at X (see Fig. 10) near the Fermi level in the 
compressed fcc phase which has no counterpart in bcc phase (nor in the 
hep phase) stabilizes the fcc phase over the bcc in exactly the manner 
discussed by Jones in his classical work on the phase boundaries in binary 
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alloys (Mott and Jones 1936, Jones 1937). The electron states below the 
gap have their one-electron band-energies lowered and are more densely 
populated than their free-electron or, here, bcc counterparts. The way 
the fee phase is stabilized in Cs under pressure is shown in Fig. 11 where 
one notes that the stabilization occurs gradually from the point where the 
Xj level crosses EF. Hence, although the fee phase eventually becomes 
more stable than the bcc phase because of the presence of the band gap at 
X, there is no direct relation between the volume (V = 0.70 Vo) where 
the phase transition occurs and the volume (V = 0.82 Vo) where the van 
Hove singularity connected with the X] level moves through the Fermi 
level. This delayed action is characteristic of many electronically driven 
transitions.

In the discussion of the stability of the fee phase we have considered 
only Cs for simplicity, but examination of the band structures for K and 
Rb shows that the above picture applies equally well to these two metals 
although there are quantitative differences between K, Rb, and Cs 
caused by the fact that the zero-pressure position of the initially unoc-

v/v0

(4ji/3)S3.S [a.u.j
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P[GPa]

v/v0
Fig. 12. Structural energy differences for the alkaline earth metals and the two divalent rare earths 
Eu and Yb as functions of relative volume V/Vo and LMTO pressure P. The volume range over 
which the elements are calculated to be semimetallic is indicated by horizontal bars. The calcula
tions included s, p, and d orbitals but not the Madelung correction Eq. (11).

cupied d band drops relative to the Fermi level as the atomic number 
increases.

5.3. The alkaline earth metals
The calculated structural-energy differences for the alkaline earth metals 
under pressure are shown in Fig. 12. In the figure the metals are ordered 
according to their calculated d occupation number at equilibrium and we 
have included the two divalent rare earths Eu and Yb, but excluded the 
divalent metals Be and Mg since they do not really belong to the crystal 
structure sequence we shall presently be discussing. The results at zero 
pressure for Be and Mg may, however, be found in the preliminary 
account (Skriver 1982) of the present work.

According to Fig. 12, Ca, Yb, and Sr at low temperature and pressure 
should form in the fee structure while Eu, Ra, and Ba should be bcc.
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These predictions are in agreement with experiments (Donohue 1975, 
Young 1975) except for Yb which at low temperature takes up the hep 
structure (Bucher et al. 1970). However, at a slightly expanded volume 
the hep phase is calculated to be the stable phase, and hence one may not 
have to appeal to zero-point motion to explain the anomalous low- 
temperature hep phase in Yb. Previous pseudopotential calculations 
(Animalu 1967) have explained the bcc structure in Ba and the pressure
end temperature-) induced fcc-^bcc transition in Sr, but gave an incor
rect (bcc) zero-pressure crystal structure in Ca. Later pseudopotential 
results (Moriarty 1973) indicated that the stable structure at ordinary 
pressure should be the fee structure for all the alkaline earths. Hence, it is 
still a challenge to pseudopotential theory to predict the crystal structures 
of the alkaline earth metals as a function of both atomic number and 
pressure.

There is a strong correlation between the calculated d occupation 
number and the calculated crystal structure as may be seen in Fig. 13. 
According to this the heavy alkaline earth metals should be part of the 
same hcp-»fcc->bcc->hcp sequence. At zero pressure each individual metal

Fig. 13. Calculated crystal 
structures for the alkaline 
earth metals as Junctions of 
the LMTO pressure and d 
occupation number.
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may be characterized as being at different stages on the continuous s-to-d 
transition, i.e. by their d occupation number, and the structural phase 
transitions are then driven by the pressure-induced lowering of the d 
band with respect to the s band. The correlation is, however, not perfect 
and the calculated crystal-structure changes occur over a narrow range of 
d occupation numbers.

Experimentally (Jayaraman et al. 1963a, b, Jayaraman 1964, Olijnyk 
and Holzapfel 1984) one observes at room temperature the fee—*bcc  part 
of the above sequence but the bcc->hcp transition is found only in Ba 
whereas the lighter alkaline earth metals transform into more complex 
high-pressure phases (Olijnyk and Holzapfel 1984) not considered here. 
The critical pressures for the fcc->bcc transition in Ca, Sr, and Yb plus 
the bcc->hcp transition in Ba are calculated to be 21, 3.8, 5.5, and 10 
[GPa], respectively (cf. Fig. 13). At room temperature Olijnyk and 
Holzapfel (1984) find experimentally 19.7 [GPa] for the transition in Ca 
while a low-temperature extrapolation of the high pressure crystallo
graphic measurements by Jayaraman et al. (1983a, b) and Jayaraman 
(1964) gives 4, 5, and 5 [GPa] for the latter three transitions. In view of 
the fact that no adjustable parameters have been used to construct 
Fig. 13, the agreement with the calculated critical pressures may be con
sidered satisfactory.

The band structure calculations show in agreement with the high- 
pressure resistivity data (Stager and Drickamer 1963a, b, Souers and Jura 
1963, McWhan et al. 1963) that Ca, Sr, and Yb in the fee phase should 
undergo a metal-semimetal-metal transition under pressure as described 
in detail for Ca by, for instance, Jan and Skriver (1981). Recently, Dunn 
and Bundy (1981) re-measured Ca and found the pressure range of the 
semimetallic phase to be much narrower than that found in earlier meas
urements (Stager and Drickamer 1963a) or predicted by band theory 
(McCaffrey et al. 1973, Mickish et al. 1974, Jan and Skriver 1981). Jan 
and Skriver (1981), for instance, predicted that fee Ca should be semime
tallic from 4 to 29 [GPa]. In the present extension of those calculations it 
is seen in Fig. 12 that before Ca reaches 29 [GPa] it is expected to trans
form into the bcc phase whereby the semimetallic behaviou will be 
terminated already at 21 [GPa]. This termination of the semimetallic 
phase at approximately 20 [GPa] is in agreement with both resistivity 
(Dunn and Bundy 1981) and crystallographic (Olijnyk and Holzapfel 
1984) measurements. However, the critical pressure of 4 [GPa] for the 
onset of the semimetallic behaviour is still too low compared to that 
obtained from the resistivity data of Dunn and Bundy (1981), and this 



CRYSTAL STRUCTURE FROM ONE-ELECTRON THEORY 235

discrepancy must be due to a failure of local-density theory of the kind 
mentioned by Jan og Skriver (1981).

In recent high-pressure measurements (Holzapfel et al. 1979, Take- 
mura and Syassen 1985) both Eu and Yb are found to transform from the 
bcc to the hep phase in seeming agreement with the systematics exhibit
ed in Fig. 13. However, since Yb (Syassen et al. 1982) and presumably 
also Eu (Johansson and Rosengren 1975, Rosengren and Johansson 1976) 
change valence under pressure their high-pressure hep phase is more 
appropriately thought of as belonging to the rare earth sequence, see 
Fig. 1, whereby it follows that Eu and Yb at very high pressures should 
exhibit the well-known hcp->Sm-type-^dhcp->fcc transitions.

5.4. The transition metals
The calculated structural energy differences for the 3d, 4d, and 5d transi
tion metals are shown in Fig. 14 and, as a comparison will show, the 
predicted crystal structures of all the metals included in this figure, neg
lecting the three ferromagnetic 3d metals, agree with the experimentally 
observed crystal structures, Fig. 1, except for the case of Au where the 
bcc structure is calculated to be marginally more stable than fee. Hence, 
it follows that by including complete, i.e. fully hybridized, band struc
tures for each individual metal but still retaining the force theorem one 
has cured most of the problems connected with the simple canonical 
picture discussed in Sect. 1.2 and exemplified in Fig. 7. Furthermore, one 
should note that the correlation between crystal structure and d occupa
tion which the canonical description predicts remains valid also for the 
complete calculations.

The results in Fig. 14 are very similar to those obtained by Pettifor 
(1970, 1972, 1977) for the 3d metals and by Williams (quoted by Miede- 
ma and Niessen 1983) for the 4d metals. However, in spite of the agree
ment of the theoretical calculations to within 25% and the correct predic
tion by the theory of the crystal structures of 27 metals, the calculated 
structural energy differences are found to be as much as a factor of 3-5 
larger than the enthalpy differences obtained from the study of binary 
phase diagrams (Miedema and Niessen 1983), Fig. 15. At present the 
cause of this discrepancy is not known. The most likely candidates are 
either neglect of non-spherical terms in the charge density or a genuine 
failure of the local density approximation. The force theorem itself does 
not seem to be the cause of the discrepancy since Williams as quoted by 
Miedema and Niessen (1983) obtains results similar to ours by subtrac
tion of total energy calculations. Finally, the »experimental« results de-
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Fig. 14. Structural energy differences for the 
3d, 4d, and 5d transition metals calculated at 
the experimentally observed equilibrium vol
ume and plotted as fonctions of the d occupation 
numbers. The calculations included s, p, and d 
orbitals but not the Madelung correction Eq. 
(11).
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Fig. 15. The calculated bcc-foc and hcp-fcc 
structural energy differences (solid and broken 
lines) for the 4d metals compared with the en
thalpy differences derived from phase diagrams 
(Miedema and Niessen 1983), open circles. 
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rived by Miedema and Niessen (1983) arc certainly model dependent and 
may therefore have large error bars.

5.5. The lanthanide metals
The calculated structural-energy differences for the two lanthanide met
als La and Lu which bracket the lanthanide series are shown in Fig. 16. 
To compare directly with the canonical results, Fig. 6, the energy differ
ences have been brought onto the canonical scale and plotted as functions 
of the calculated d occupation number. The results in Fig. 16 are qualita
tively similar to the canonical results but the energy differences are gen
erally smaller by approximately a factor of 2, judged by, for instance, the 
minimum in the Sm-type curve, than their canonical counterparts. 
Furthermore, the lanthanide sequence has been shifted to lower d occu
pation numbers whereby the problems connected with the canonical 
description in the d occupation range above 1.6 have been removed. 
Hence, Ti, Zr, and Hf are no longer part of the lanthanide sequence and 
are instead correctly predicted to form in the hep structure, Fig. 14.

In an account of the cohesive properties of the lanthanides Skriver 
(1983) found that the d occupation numbers calculated at the experimen
tally observed equilibrium volume decreased approximately linearly

P [GPa]

Fig. 16. Structural energy differences for La 
and Lu calculated as functions of pressure P and 
plotted versus d occupation number nj. The cal
culations included s, p, d, and f orbitals, 4f for 
La and 5f for Lu, but not the Madelung correc
tion Eq. (11).
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Fig. 77. Structural energy P[GPa]

with atomic number between La and Lu. Hence, Fig. 16 may be used to 
estimate the equilibrium crystal structures of the lanthanide metals, ex
cluding Ce because of its y-a transition, and the two divalent metals Eu 
and Yb. In agreement with the generalized phase diagram (Johansson 
and Rosengren 1975) we find that La, Pr, Nd, and Pm should form in the 
dhcp structure while Sm should be Sm-type. However, the heavy lan
thanides are incorrectly estimated to form in the Sm-type structure. The 
immediate reason for this failure seems to be that the stability of the hep 
structure at a given d occupation is calculated to be too low compared 
with dhcp and Sm-type but the deeper cause is not known at present. As 
a result, the Sm-type structure extends over too wide a d occupation 
range.

Fig. 16 may also be used to predict the behaviour of La and Lu under 
pressure. We find that Lu should transform from hep to the Sm-type 
structure at - 2 [GPa] and into the dhcp structure at 35 [GPa]. Because of 
a 2% error in the calculated equilibrium radius and because of the failure 
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mentioned above, the first estimate is in error by 25 [GPa], the experi
mental critical pressure being 23 [GPa] (Liu 1975). The second transition 
has not yet been observed.

Under pressure La is predicted to transform from dhep to the fee 
structure at 8 [GPa], Fig. 17, which compares favourably with the exper
imental room-temperature transition pressure of 2.5 [GPa] (Piermarini 
1964). The distorted fee phase discovered by Grosshans et al. (1982) has 
not been considered, but we shall return to the high-pressure properties 
of La in the following section.

5.6. Cerium metal under pressure
The behaviour of Ce under pressure has been a subject of long-standing 
and some controversy, primarily because of the unusual isostructural
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y->a transition. Here we shall be concerned with the fcc-»a-U->tetragonal 
crystal-structure sequence exhibited by metallic Ce at low temperature 
in the pressure range up to 20 [GPa] (see Fig. 18). In the calculations we 
shall treat the s, p, d, and the 4f electrons on the same footing, i.e. as 
band electrons. Hence, we favour the picture of the y->a transition sug
gested by Gustafson et al. (1969) and elaborated by Johansson (1974) 
according to which pressure induces a Mott transition within the 4f shell 
such that the 4f electron goes from a localized state in y-Ce to a de
localized, i.e. band state, in a-Ce.

According to the Mott-transition picture Ce metal at pressures above 
the y-^a transition is different from the other lanthanides (and indeed 
from all the other metals we have considered so far) in that it has a fourth 
conduction electron residing in the 4f band. It is this occupation of the 4f 
band which is expected to be responsible for the stability of the a-U 
structure found experimentally above 5.6 [GPa] (Ellinger and Zacharia- 
sen 1974) and perhaps for the tetragonal phase found above 12.1 [GPa] 
(Endo et al. 1977). To shed light on this question we shall now present a 
series of calculations of structural stabilities for Ce under pressure, and 
compare the results with those obtained for La where the 4f band is 
essentially empty.

The orthorombic a-U structure may be viewed as distorted fee, where 
some of the face-centered atoms have been moved away from their 
positions as described by the parameter 2y, see Fig. 19. If 2y = 0.5a and a 
= b = c one has the usual fee unit cell. In the case of Ce the Madelung 
contribution to the structural energy favours a 2y of approximately 0.3 
(see top panel of Fig. 19) but the one-electron contribution moves the 
minimum in the energy difference to 2y = 0.21 which is the 2y value 
found experimentally in U (Donohue 1975). Under pressure the mini
mum is seen to move to slightly lower 2y values and eventually the a-U 
structure becomes more stable than the fee.

From fig. 19 it is expected that Ce will exhibit an fcc->a-U phase 
transition at a pressure which is calculated to be 11.7 [GPa]. The experi
mental transition pressure is 5.6 [GPa] (Ellinger and Zachariasen 1974), 
and the discrepancy may be attributed to the fact that the atomic sphere 
approximation is less suited for open crystal structures such as the a-U 
structure. As may be seen in Fig. 19 the Madelung correction, which we 
could neglect for the close-packed crystal structures of the alkaline earth 
and transition metals is now of the same order of magnitude as the one- 
electron contribution. Hence, inadequacies in the Madelung approxima
tion of the electrostatic contribution to the structural energy are magni-
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Fig. 19. Energy of Ce in the 
a-U structure relative to the 
fee phase calculated as a func
tion of the positional parame
ter 2y (see insert) and atomic 
radius S. The individual 
Madelung and one-electron 
contributions for one particu
lar radius are shown in the 
upper panel.

fied and lead to errors in the estimate of the stability of the a-U structure. 
A similar problem was recently encountered in the case of the open Cs 
IV structure in Cs metal (McMahan 1984).

If we compare the structural energy-differences for Ce and La 
(Figs. 17, 19) under pressure we find that while the a-U structure eventu
ally becomes more stable than fee in Ce it does not do so in La. Since the 
4f band is essentially unoccupied in La, whereas Ce has approximately 
one 4f band electron, the notion that f-band states are responsible for the 
stability of distorted crystal structures such as the a-U structure is 
strongly supported by the present calculations. It follows that the a-U 
structure would not become stable in Ce under pressure unless the 4f 
electrons were delocalized, i.e. band like, and therefore any adequate 
description of the a and a’ phases in Ce must treat the 4f states on the 
same footing as the s, p, and d states. In short, Ce is a 4f band metal.

The high-pressure tetragonal structure (Endo et al. 1977) of Ce may be 
regarded as a distorted fee structure in which the unit cell has been 
elongated along the c axis such that the c/a ratio in a body-centred
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Fig. 20. Energy of Ce in the 
body-centred tetragonal (bet) 
structure relative to the fee 
phase calculated as a junction 
of the c/a ratio and atomic 
radius (the pressures can be 
inferred from Fig. 21). The 
insert shows the bet structure.

Sla.u

3.6
3.5
3.4
3.3
3.2

c/a

tetragonal (bet) description is approximately 1.7, see Fig. 20. In the same 
description bcc and fee correspond to c/a equal to 1 and VIT, respective
ly. According to the structural energy differences in Fig. 20 Ce should as 
a function of pressure start out in the fee structure and then transform 
into a bet structure with a c/a ratio which increases with pressure. In this 
.case the 4f states do not seem to be responsible for the pressure-induced 
transition, since the same bet structure is also calculated to be the stable 
high-pressure phase of La, Fig. 17.

In Fig. 21 we have collected the calculated structural energy differences 
for Ce under pressure. Owing to the less accurate description of open 
structures discussed above, the ot-U structure is seen not to be the stable 
phase in the pressure range considered, and instead Ce would be expect
ed to go directly from the fee into the bet phase. However, if we move 
the a-U curve down by 4.5 [mRy] which is 20% of the Madelung 
correction (see Fig. 19) we obtain agreement with experiment (Ellinger 
and Zachariasen 1974, Endo et al. 1977) in the sense that Ce is now 
expected to exhibit the crystal structure sequence fcc->a-U->tetragonal.

5.7. The light actinides
The calculated structural energy differences for the light actinides Th-Pu 
are shown in Fig. 22, from which we deduce the most stable close- 
packed structure to be fee in Th and Pa and bcc in U, Np, and Pu. This 
indicates that although these structures are not the stable low-tempera
ture structures in Pa-Pu, they are at least close in energy to the distorted 
structures observed experimentally and may therefore be realized at ele
vated temperatures. Experimentally one finds the fee structure to be 
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stable in Th up to 1670 [K] (Donohue 1975, Young 1975), and there are 
indications that Pa has a high temperature fee phase (Donohue 1975). 
Furthermore, neither U nor Np has a high temperature fee phase but 
instead they become bee before melting. Pu has a high temperature fee 
(Ô) phase but since this phase becomes unstable at a pressure of only 0.1 
[GPa] it is most probably associated with a localization of the 5f elec
trons, and the relevant high temperature phase in the present context is 
then the bcc (e) phase. Thus, experimentally the most stable close-pack
ed structure appears to be fee in Th and Pa, and bcc in U, Np, and Pu, in 
agreement with the findings in Fig. 22.

The low-temperature tetragonal structure (a) in Pa may be viewed 
(Zachariasen 1952) as a distorted bcc structure in which the unit cell has 
been compressed along the c axis such that the c/a ratio is approximately 
0.82, see Fig. 23. According to Fig. 23 the Madelung contribution

PfGPal

Fig. 21. Structural energy 
differences for Ce calculated 
as a fonction of pressure P 
and plotted versus atomic 
radius. S„ indicates the 
experimentally observed 
equilibrium radius of Ce in 
the a phase. The calculations 
included s, p, d, and f orbi
tals and the Madelung correc
tion Eq. (11).
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favours bet structures with c/a in the range from 0.95 to 1.50, whereas 
structures with c/a outside this range rapidly become extremely unsta
ble. In contrast, the one-electron contribution tends to favour c/a outside 
the central range, and as a result the energy difference curve for Th has 
one minimum at c/a = "VfT, corresponding to fee, in agreement with 
experiment, while that of Pa exhibits three minima, one of which is close 
to the c/a observed experimentally in the a phase.

As in the case of the a-U structure in Ce, we are again experiencing 
problems stemming from the atomic sphere approximation and in par
ticular the Madelung correction, which leads to slightly incorrect esti
mates of the structural energy differences for open crystal structures. 
Thus, in the case of Pa the most stable structure is calculated to be bet 
with c/a = 1.6, which incidentally is the high-pressure phase of Ce, 
whereas the minimum which corresponds to the experimental a struc
ture lies 1.3 mRy above the absolute minimum and is shifted to a c/a of 
0.92. However, in view of the rapidly changing Madelung correction in 
the range below c/a = 0.95, it is not unlikely that a better calculation of 
the electrostatic contribution to the structural energy differences may 
correct both errors.

Since the 5f band is unoccupied in Th while Pa has approximately one 
5f electron it follows from Fig. 23 that the 5f states are responsible for the 
stability of the tetragonal a phase in Pa. Thus, the situation here is very

Fig. 22. Calculated structural energy differen
ces for the light actinides plotted versus atomic 
number. The calculations included s, p, d, and f 
orbitals but not the Madelung correction Eq. 
(11)-
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c/a

Fig. 23. Energy of Th and 
Pa in the bet structure rela
tive to the fee phase calcu
lated as a function of the da 
ratio. The upper panel 
shows the one-electron con
tributions, the insert shows 
the shape of the Madelung 
correction, and the lower 
panel shows the total energy 
differences.

similar to that found earlier in Ce where the presence of one 4f electron 
stabilized the high pressure ot-U structure, and again we take this to 
mean that the 5f states in the light actinides are itinerant, i.e. band-like, 
and give rise to distorted crystal structures.

6. Conclusion

We have studied the stability of the crystal structures of some 40 elemen
tal metals within a one-electron approach. The effective one-electron 
equations have been solved self-consistently by means of the LMTO 
method and the structural energy differences calculated by means of 
Andersen’s force theorem. This approach has the advantage of treating s, 
p, d, and f states on the same footing, thus leading to a conceptually 
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consistent description of trends throughout the periodic table. However, 
the present implementation of the method is only accurate for close- 
packed crystal structures, and for that reason we exclude in our study 
open structures such as CsIV and the more exotic structures found in the 
actinide series. On the other hand, this shortcoming is not fundamental 
and will undoubtedly be remedied in the near future.

We find that the theory correctly predicts the crystal structures ob
served experimentally at low temperature and atmospheric pressure in 
35 out of the 42 cases studied. In those few instances where the theory 
fails we find that the correct crystal structure is only marginally less 
stable than the calculated structure — this is the case for Na, Au, Yb, and 
Pa - or the metal is magnetic at low temperature, as in Mn, Fe, and Co. 
For the light actinides U, Np, and Pu we have not considered the experi
mentally most stable crystal structures but only the most stable close- 
packed structures and find the predictions of the theory to be in qualita
tive agreement with the known phase diagrams.

In a comparison between the calculated structural energy differences 
for the 4d transition metals and the enthalpy differences derived from 
studies of phase diagrams we find that, although the crystal structures 
are correctly predicted by the theory, the theoretical energy differences 
are up to a factor of 5 larger than their »experimental« counterparts. The 
reasons for this discrepancy may lie in the local-density approximation 
or in the neglect of the non-spherical part of the charge distribution. 
Furthermore, the derived enthalpy differences are certainly model de
pendent and may change as the model is improved.

In addition to the equilibrium properties we have studied the crystal 
structures of the alkali, the alkaline earth and some rare earth metals 
under pressure. We find that the heavy alkalis K, Rb, and Cs should be 
part of the crystal structure sequence bcc-»hcp-»fcc where the interme
diate hep phase may be suppressed at room temperature, and explain the 
experimentally observed bcc->fcc transition in terms of the pressure- 
induced descent of a zone-boundary energy gap which exists in the fee 
band structure but has no counterpart in the bcc case. For the alkaline 
earth and rare earth metals we find crystal structure sequences which 
correlate with the calculated d-occupation numbers and which are in 
agreement with experimental high-pressure observations if we neglect 
some complex structures found in Ca and Sr.

Finally, we have studied the high-pressure crystal structure sequence 
fcc->(X-U->tet for La and Ce and find that under compression the a-U 
structure becomes more stable than fee in Ce, but not in La. This indi
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cates that the presence of itinerant 4f states is responsible for the fcc->a-U 
transition observed experimentally in Ce. In both La and Ce the calcula
tions predict a tetragonal high-pressure phase. This phase is seen experi
mentally in Ce but not in La where one instead observes a distorted fee 
structure not considered in the present work.

In conclusion, we have studied the stability of crystal structures of 
metals both at equilibrium and at high pressures by a one-electron ap
proach. We find that we can account for the occurence of most of the 
close-packed structures observed experimentally. In the few cases where 
the theory is in disagreement with experiment we find that the correct 
crystal structure is only marginally less stable than the predicted struc
ture. In order to describe open structures, such as ot-U or CsIV, with the 
same accuracy as the close-packed structures one needs a more accurate 
approximation for the electrostatic contribution to the total energy.

Acknowledgments. The present series of calculations grew out of conversations with several 
people. It is thus a great pleasure to thank K. Syassen and K. Taketnura for making me interested 
in the alkali metal problem, and B. Johansson for suggesting the Ce problem. B. Johansson and 
A. K. McMahan have furthermore helped clarify calculational as well as experimental problems. 
Part of this work was started while visiting Los Alamos Scientific Laboratory, and I wish to thank 
the group at the Materials Science Center for its kind hospitality. Finally, I want to express my 
gratitude to Knud Højgaards Fond for granting my Niels Bohr Fellowship.

References

J. Akella, Q. Johnson, W. Thayer, and R. N. Schock, J. Less-Comm. Met. 68, 95 (1979).
J. Akella, Q. Johnson, and R. N. Schock, Geophysical Res. 85, 7056 (1980).
I. V. Alexandrov, C. V. Nesper, V. N. Katchinsky and J. Marenko, paper at the 20th

meeting of the »European High pressure Research Group«, Stuttgart, 1982 (unpub
lished).

O. K. Andersen, Phys. Rev. B12, 3060 (1975).
O. K. Andersen and O. Jepsen, Physica 91B, 317 (1977).
O. K. Andersen, J. Madsen, U. K. Poulsen, O. Jepsen, and J. Kollar, Physica 86-88B, 249 

(1977).
O. K. Andersen, H. L. Skriver, H. Nohl, and B. Johansson, Pure Appl. Chem. 52, 93 

(1979).
A. O. E. Animalu, Phys. Rev. 161, 445 (1967).
J. Bardeen, J. Chem. Phys. 6, 372 (1938).
U. von Barth and L. Hedin, J. Phys. C5, 1629 (1972).
B. J. Beaudry and K. A. Gschneidner, Jr., »Preparation and Basic Properties of the Rare

Earth Metals« in »Handbook on the Physics and Chemistry of Rare Earths« ed. by
K. A. Gschneidner, Jr. and L. R. Eyring (North Holland Publishing Company, Am
sterdam 1978).



248 HANS L. SKRIVER

U. Benedict, J. R. Peterson, R. G. Haire, and C. Dufour, J. Phys. F14, L43 (1984).
M. Born and J. E. Mayer, Zcits. f. Physik 75, 1 (1932).
L. Brewer: »Phase Stability in Metals and Alloys« in »Batelle Institute Materials Science

Colloquia«, ed. by P. S. Rudman, J. Stringer, and R. I. Jaffee (McGraw-Hill, New 
York 1967), pp. 39-62.

E. Bucher, P. H. Schmidt, A.Jayaraman, K. Andres, J. P. Maita, K. Nassau, and
P.D. Dernier, Phys. Rev. B2, 3911 (1970).

M. S. S. Biooks and B. Johansson, J. Phys F13, L197 (1983).
N. W. Dalton and R. A. Deegan, J. Phys. C2, 2369 (1969).
R. A. Deegan, J. Phys. Cl, 763 (1968).
J. Donohue, »The Structures of the Elements« (John Wiley & Sons, New York 1975).
F. Ducastelle and F. Cyrot-Lackmann, J. Phys. Chem. Solids 32, 285 (1971).
K. J. Dunn and F. P. Bundy, Phys. Rev. B24, 1643 (1981).
J. C. Duthie and D. G. Pettifor, Phys. Rev. Lett. 38, 564 (1977).
F. H. Ellinger and W. H. Zachariasen, Phys. Rev. Lett. 32, 773 (1974).
S. Endo, H. Sasaki, and T. Mitsui, J. Phys. Soc. Japan 42, 882 (1977).
E. Esposito, A. E. Carlsson, D. D. Ling, H. Ehrenreich, and C. D. Gelatt, Jr., Phil. Mag. 

A41, 251 (1980).
J. Friedel, »Transition Metals. Electronic Structure of the d-band. Its Role in the Crystal

line and Magnetic Structures« in »The Physics of Metals 1. Electrons« ed. by J. M. Zi- 
man (Cambridge University Press 1969).

J. Friedel and C. M.. Sayers. J. Physique 38, 697 (1977).
D. Glötzel and A. K. McMahan, Phys. Rev. B20, 3210 (1979).
W. A. Grosshans, Y. K. Vohra, and W. B. Holzapfel, Phys. Rev. Lett. 49, 1572 (1982).
K. A. Gschneidner, »Physical Properties and Interrelations of Metallic and Semimetallic

Elements« in »Solid State Physics« vol. 16, ed. by H. Ehrenreich, F. Seitz, and 
D. Turnbull (Academic Press, New York 1964).

K. A. Gschneidner and R. M. Valletta, Acta Met. 16, 477 (1968).
D. R. Gustafson, J. D. McNutt and L. O. Roellig, Phys. Rev. 183, 435 (1969).
J. Hafner and V. Heine, J. Phys. F13, 2479 (1983) and references therein.
H. T. Hall, L. Merril, and J. D. Barrett, Science 146, 1297 (1964).
V. Heine and D. Weaire, »Pseudopotential Theory of Cohesion and Structure« in »Solid

State Physics« vol. 24 ed. by H. Ehrenreich, F. Seitz, and D. Turnbull (Academic 
press, New York 1970).

V. Heine, »Electronic Structure from the Point of View of the Local Atomic Environ
ment« in »Solid State Physics« vol. 35 ed. by H. Ehrenreich, F. Seitz, and D. Turn
bull (Academic Press, New York 1980).

C. H. Hodges, Acta Met. 15, 1787 (1967).
W. B. Holzapfel, T. G. Ramesh, and K. Syassen, J. de Phys. Coll. 40, C5-390 (1979). 
J.-P. Jan and H. L. Skriver, J. Phys. Fll, 805 (1981).
A.Jayaraman,  W. Klement, Jr., and G. C. Kennedy, Phys. Rev. Lett. 10, 387 (1963a). 
A.Jayaraman, N. Klement, Jr., and G. C. Kennedy, Phys. Rev. 132, 1620 (1963b). 
A.Jayaraman, Phys. Rev. 135, A1056 (1964).
A.Jayaraman and R. C. Sherwood, Phys. Rev., 134, A691 (1964).
A. Jayaraman, Phys. Rev. 139, A690 (1965).
B. Johansson, Phil. Mag. 30, 469 (1974).
B. Johansson and A. Rosengren, Phys. Rev. Bll, 2836 (1975).



CRYSTAL STRUCTURE FROM ONE-ELECTRON THEORY 249

B. Johansson, »Structural and elastic properties of the f elements« in »Rare Earths and
Actinides, 1977« ed. by W. D. Corner and B. K. Tanner (IOP, Bristol 1978), p. 39 
(Inst. Phys. Conf. Ser. No. 37).

H.Jones, Prog. Phys. Soc. 49, 250 (1937).
L. Kaufman and H. Bernstein: »Computer Calculations of Phase Diagrams« (Academic 

Press, New York 1970).
L. G. Khvostantsev and N. A. Nikolaev, Phys. Stat. Sol. (a) 77, 161 (1983).
C. C. Koch, J. Less-Comm. Met. 22, 149 (1970).
W. Kohn and L.J. Sham, Phys. Rev. 140A, 1135 (1965).
L.-G.  Liu, W. A. Bassett, and M. S. Liu, Science 180, 298 (1973).
L.-G.  Liu, J. Phys. Chem. Solids 36, 31 (1975).
J. W. McCaffrey, J. R. Anderson, and D. A. Papaconstantopoulos, Phys. Rev. B7, 674 

(1973).
A. R. Machintosh and O. K. Andersen, »The electronic structure of transition metals« in 

»Electrons at the Fermi surface« ed. by M. Springford (Cambridge University Press, 
Cambridge 1980).

A. K. McMahan and J. A. Moriarty, Phys. Rev. B27, 3235 (1983).
A. K. McMahan, Phys. Rev. B29, 5982 (1984).
D. B. McWhan and A. L. Stevens, Phys. Rev. 139, A682 (1965).
D. B. McWhan and A. L. Stevens, Phys. Rev. 154, 438 (1967).
D. B. McWhan, T. M. Rice, and P. H. Schmidt, Phys. Rev. 177, 1063 (1969).
D.J. Michish, A. B. Kunz, and S. T. Pantalides, Phys. rev. B10, 1369 (1974).
A. R. Miedema and A. K. Niessen, CALPHAD 7, 27 (1983).
J. A. Moriarty, Phys. Rev. B8, 1338 (1973).
J. A. Moriarty, Phys. Rev. B26, 1754 (1982).
J. A. Moriarty and A. K. McMahan, Phys. Rev. Lett. 48, 809 (1982).
N. F. Mott and H. Jones, »The Theory of the Properties of Metals and Alloys« (Oxford 

Univ. Press, London 1936).
A. Nakaue, J. Less-Comm. Met. 60, 47 (1978).
R. M. Nieminen and C. H. Hodges, J. Phys. F6, 573 (1976).
H. Olijnyk and W. B. Holzapfel, Phys. Lett. 99A, 381 (1983).
H. Olijnyk abd W. B. Holzapfel, Phys. Lett. 100A, 191 (1984).
B. Olinger and J. W. Shaner, Science 219, 1071 (1983).
D. G. Pettifor, J. Phys. C3, 367 (1970).
D. G. Pettifor: »Theory of the Crystal Structures of Transition Metals at Absolute Zero« 

in »Metallurgical Chemistry « ed. by O. Kubashewski (HMSO, London 1972).
D. G. Pettifor, Commun. Phys. 1, 141 (1976).
D. G. Pettifor, CALPHAD 1, 305 (1977).
G. J. Piermarini and C. E. Weir, Science 144, 69 (1964).
R. B. Roof, R. G. Haire, D. Schiferl, L. A. Schwalbe, E. A. Kmetko, and J. L. Smith, 

Science 207, 1353 (1980).
R. B. Roof, Z. für Krist. 158, 307 (1982).
A. Rosengren and B. Johansson, Phys. Rev. B13, 1468 (1976).
H. L. Skriver, Phys. Rev. Lett. 49, 1768 (1982).
H. L. Skriver, »Electronic Structure and Cohesion in The Rare Earth Metals« in »Sy

stematics and the Properties of the Lanthanides« ed. S. P. Sinha (D. Reidel Publishing 
Company, Dordrect 1983).



250 HANS L. SKRIVER

H. L. Skriver, »The LMTO Method« (Springer-Verlag, Berlin 1984).
P. C. Souers and G. Jura, Science 140, 481 (1963).
R. A. Stager and H. G. Drickamer, Phys. Rev. 131, 2524 (1963).
R. A. Stager and H. G. Drickamer, Science 139, 1284 (1963).
D. R. Stephens, H. D. Stromberg, and E. M. Lilley, J. Phys. Chem. Solids 29, 815 

(1968).
K. Syassen, G. Wortmann, J. Feldhaus, K. H. Frank, and G. Kaindl, Phys. Rev. B26, 

4745 (1982).
K. Takemura, S. Minomura, and O. Shimomura, »Structure of Cesium and Iodine under 

Pressure« in »Physics of Solids under High Pressure« ed. by J. S. Schilling and 
R. N. Shelton (North-Holland, Amsterdam 1981).

K. Takemura and K. Syassen, Solid State Commun. 44, 1161 (1982).
K. Takemura, S. Minomura, and O. Shimomura, phys. Rev. Lett. 49, 1772 (1982).
K. Takemura and K. Syassen, Phys. Rev. B28, 1193 (1983).
K. Takemura and K. Syassen, J. Phys. F (1985, in print).
A. R. Williams, unpublished, and quoted by Miedema and Niessen (1983).
Y. K. Vohra, H. Olijnyk, W. A. Grosshans, and W. B. Holzapfel, Phys. Rev. Lett. 47, 

1065 (1981).
D. A. Young, »Phase Diagrams of the Elements«, Lawrence Livermore Laboratory Re

port UCRL-51902 (1975, unpublished).
D. A. Young and M. Ross, Phys. Rev. B29, 682 (1984).
W. H. Zachariasen, Acta Cryst. 5, 19 (1952).
A. Zunger and M. L. Cohen, Phys. Rev. B18, 5449 (1978); B20, 4082 (1979).


